
Preparing Your
Applications for
Future NERSC

Machines

Jack Deslippe
NERSC User Services
10/8/2013

What HPC Will Look Like at NERSC in 2017

The Future Will Have Many-Cores

Disruptive changes are coming!

● If you do nothing, your MPI-only code may
run poorly on future machines.

● NERSC is here to help

The Future Will Have Many-Cores

Memory

… Compute Units

No matter what chip architecture is in NERSC’s 2017
machines, compute nodes will have many compute
units with shared memory.

Memory per compute-unit is not expected to rise.

The only way that NERSC can continue to provide
compute speed improvements that meet user need is
by moving to “energy-efficient” architectures; tend
to have lower clock-speeds, rely heavily on
vectorization/SIMD.

Due primarily to power constraints, chip vendors are moving to “many-core”
architectures:

Consumer/Server CPUs: 10’s of Threads per Socket
Intel Xeon-Phi: 100’s of Threads per Socket
NVIDIA GPUs: 1000’s of Threads per Socket

NERSC Roadmap

Fl
op

s/
se

c

NERSC Roadmap

Fl
op

s/
se

c

What users (and I) want

•Robust code changes
–I don’t want to add things in only to take them out
again two years later

•Performance portability
–Changes made today for one platform should help
on all

The many-core challenge for application developers

For the last decade, we’ve enjoyed massively
parallel machines with MPI as the standard
programming method for exposing parallelism
between nodes.

To study larger physical systems of interest, and
get the most out of HPC resources, we now need
to exploit “on-node” parallelism and manage
memory effectively.

The recommended programming model for Edison
is already MPI (between nodes) and OpenMP on
node.

Xeon-Phi
100+ hardware threads

The many-core challenge for application developers

For the last decade, we’ve enjoyed massively
parallel machines with MPI as the standard
programming method for exposing parallelism
between nodes.

To study larger physical systems of interest, and
get the most out of HPC resources, we now need
to exploit “on-node” parallelism and manage
memory effectively.

The recommended programming model for Edison
is already MPI (between nodes) and OpenMP on
node.

Porting to MPI+OpenMP on Edison, will position
you for “many-core”

Xeon-Phi
100+ hardware threads

Vectorization

There is a another important form of on-node parallelism

Vectorization: CPU does identical operations on different data; e.g., multiple iterations of the
above loop can be done concurrently.

 do i = 1, n
 a(i) = b(i) + c(i)
 enddo

Vectorization

There is a another important form of on-node parallelism

Vectorization: CPU does identical operations on different data; e.g., multiple iterations of the
above loop can be done concurrently.

 do i = 1, n
 a(i) = b(i) + c(i)
 enddo

Intel Xeon Sandy-Bridge/Ivy-Bridge: 4 Double Precision Ops Concurrently

Intel Xeon Phi: 8 Double Precision Ops Concurrently

NVIDIA Kepler GPUs: 32 SIMT threads

Things that Kill Vectorization

Compilers want to “vectorize” your loops whenever possible. But sometimes they
get stumped. Here are a few things that prevent your code from vectorizing:

Loop dependency:

Task forking:

 do i = 1, n
 a(i) = a(i-1) + b(i)
 enddo

 do i = 1, n
 if (a(i) < x) cycle
 if (a(i) > x) …
 enddo

NERSC is committed to helping BES

Help transition the NERSC workload to future architectures by
exploring and improving application performance on manycore
architectures.

Phase 1:
➔ Identify major algorithms in the NERSC workload. Assigned

14 codes to represent class.
◆ BES Codes:

● Quantum ESPRESSO/BGW (DFT Proxy)
● NWCHEM (Quantum Chemistry Proxy)
● Amber (MD Proxy)
● Zori (QMC Proxy)

➔ Profile OpenMP/MPI scaling and vectorization in key kernels
on GPU testbed (dirac) and Xeon-Phi testbed (babbage).

Phase 2:
➔ Organize user training around OpenMP and vectorization.
➔ Meet with key application developers / workshops
➔ User accessible test-bed systems.

Lattice QCD

Density
Functional
Theory

Fusion
PIC

ClimateQuantum Chemistry
QMC

Fast Math
CMB

Bioinformatics

Molecular
DynamicsFusion

Continuum

Other
codes

Accelerator PIC

NERSC Workload
By Algorithm

NERSC is Here to Help

Nick Wright (Co-
Lead)
Amber (Proxy for
NAMD, LAMMPS)

Katerina Antypas
(Co-Lead)

Harvey Wasserman
SNAP (SN transport
proxy)

Brian Austin
Zori (Proxy for
QWalk etc.)

Hongzhang Shan
NWChem (Proxy for
qchem, GAMESS)

Jack Deslippe
Quantum ESPRESSO
/ BerkeleyGW (Proxy
for VASP, Abinit)

NERSC is kicking off an “Application Readiness” effort. Devoting significant staff effort to help users
and developers port their codes to many-core architectures

Woo-Sun Yang
CAM (Proxy for
CESM)

Helen He
WRF

Matt Cordery
MPAS

Kirsten Fagnan
Bio-Informatics

Aaron Collier
Madam-Toast /
Gyro

Hari Krishnan
Vis.

Case Study

Case Study: BerkeleyGW

Description:

A material science code to compute
excited state properties of materials.
Works with many common DFT
packages.

Algorithms:

- FFTs (FFTW)

- Dense Linear Algebra (BLAS / LAPACK
/ SCALAPACK / ELPA)

- Large Reduction Loops.

Silicon Light Absorption vs. Photon Energy
as Computed in BerkeleyGW

Failure of the MPI-Only Programming Model in BerkeleyGW

★ Big systems require more memory. Cost scales as Natm^2 to store the data.

★ In an MPI GW implementation, in practice, to avoid communication, data is duplicated and
each MPI task has a memory overhead.

★ On Hopper, users often forced to use 1 of 24 available cores, in order to provide MPI tasks
with enough memory. 90% of the computing capability is lost.

Distributed Data

Overhead Data

MPI Task 1

Distributed Data

Overhead Data

MPI Task 2

Distributed Data

Overhead Data

MPI Task 3

…

Steps to Optimize BerkeleyGW on Xeon-Phi Testbed

Time/Code-Revision

1. Refactor to create hierarchical set of loops to be parallelized via MPI, OpenMP and
Vectorization and to improve memory locality.

2. Add OpenMP at as high a level as possible.
3. Make sure large innermost, flop intensive, loops are vectorized.

(4 Sandy Bridge)

(4 Xeon-Phi)

Steps to Optimize BerkeleyGW on Xeon-Phi Testbed

Time/Code-Revision

1. Refactor to create hierarchical set of loops to be parallelized via MPI, OpenMP and
Vectorization and to improve memory locality.

2. Add OpenMP at as high a level as possible.
3. Make sure large innermost, flop intensive, loops are vectorized.

(4 Sandy Bridge)

After optimization, 4
early Intel Xeon-Phi
cards with
MPI/OpenMP is ~1.5X
faster than 32 cores of
Intel Sandy Bridge on
test problem.

(4 Xeon-Phi)

Running on Many-Core Xeon-Phi Requires OpenMP Simply
To Fit Problem in Memory

★ Example problem cannot fit into memory when using less than 5 OpenMP
threads per MPI task.

★ Conclusion: you need OpenMP to perform well on Xeon-Phi in practice

Fail
to

Run

See poster for details.

BGW On Intel Xeon Phi

Improvements for Many-Core improve your Code on Hopper.

12 MPI Tasks/Node on Hopper
(Requires > 2GB per MPI Task).

Speed-Up on Hopper Largely
Due to Addition of OpenMP
Support

24 MPI Tasks Per Node.

Speed-Up on Hopper Largely
Due to Vectorization and
addition of Parallel-IO

H
op

pe
r R

un
tim

es
: B

G
W

 1
.0

 v
s

1.
1

Improvements for Many-Core improve your Code on Hopper.

12 MPI Tasks/Node on Hopper
(Requires > 2GB per MPI Task).

Speed-Up on Hopper Largely
Due to Addition of OpenMP
Support

24 MPI Tasks Per Node.

Speed-Up on Hopper Largely
Due to Vectorization and
addition of Parallel-IO

H
op

pe
r R

un
tim

es
: B

G
W

 1
.0

 v
s

1.
1

Improving your code for advanced
architectures can result in
performance improvements on
traditional architectures.

Conclusions and Lessons Learned

Summary

➔ Disruptive Change is Coming!

➔ NERSC is Here to Help

➔ Good performance will require code changes
◆ Identify more on-node parallelism
◆ Ensure vectorization for critical loops

➔ The code changes you make for many-core architectures will improve
performance on all architectures.

NERSC is Here to Help

But We Need Your Help Too….

Let us know the preparation status of the codes you use. Let us know which
developers to get in touch with and what features are important to you.

National Energy Research Scientific
Computing Center

Hybrid OpenMP + MPI For Distributed FFTs in DFT Minimizes
All-to-All Communication Costs

Figure courtesy of Andrew Canning. Test on Jaguar, OLCF.

Hybrid (OpenMP/MPI) reduces MPI communication costs
over pure MPI implementation.

Paratec Runtime: FFT: 3dFFT “DGEMM”: all non-3dFFT parts of code MPI: sum of all MPI comms.

Blank Slide

Blank Content

